138 research outputs found

    Wave propagation in one-dimensional nonlinear acoustic metamaterials

    Full text link
    The propagation of waves in the nonlinear acoustic metamaterials (NAMs) is fundamentally different from that in the conventional linear ones. In this article we consider two one-dimensional NAM systems featuring respectively a diatomic and a tetratomic meta unit-cell. We investigate the attenuation of the wave, the band structure and the bifurcations to demonstrate novel nonlinear effects, which can significantly expand the bandwidth for elastic wave suppression and cause nonlinear wave phenomena. Harmonic averaging approach, continuation algorithm, Lyapunov exponents are combined to study the frequency responses, the nonlinear modes, bifurcations of periodic solutions and chaos. The nonlinear resonances are studied and the influence of damping on hyper-chaotic attractors is evaluated. Moreover, a "quantum" behavior is found between the low-energy and high-energy orbits. This work provides an important theoretical base for the further understandings and applications of NAMs

    Synthesis and Characterization of Bowl-Like Single-Crystalline BaTiO3 Nanoparticles

    Get PDF
    Novel bowl-like single-crystalline BaTiO(3) nanoparticles were synthesized by a simple hydrothermal method using Ba(OH)(2)·8H(2)O and TiO(2) as precursors. The as-prepared products were characterized by XRD, Raman spectroscopy, SEM and TEM. The results show that the bowl-like BaTiO(3) nanoparticles are single-crystalline and have a size about 100–200 nm in diameter. Local piezoresponse force measurements indicate that the BaTiO(3) nanoparticles have switchable polarization at room temperature. The local effective piezoelectric coefficient [Image: see text] is approximately 28 pm/V

    Programmable gear-based mechanical metamaterials

    Get PDF
    Elastic properties of classical bulk materials can hardly be changed or adjusted in operando, while such tunable elasticity is highly desired for robots and smart machinery. Although possible in reconfigurable metamaterials, continuous tunability in existing designs is plagued by issues such as structural instability, weak robustness, plastic failure and slow response. Here we report a metamaterial design paradigm using gears with encoded stiffness gradients as the constituent elements and organizing gear clusters for versatile functionalities. The design enables continuously tunable elastic properties while preserving stability and robust manoeuvrability, even under a heavy load. Such gear-based metamaterials enable excellent properties such as continuous modulation of Young’s modulus by two orders of magnitude, shape morphing between ultrasoft and solid states, and fast response. This allows for metamaterial customization and brings fully programmable materials and adaptive robots within reach

    Formation of the synaptonemal complex in a gynogenetic allodiploid hybrid fish

    Get PDF
    Introduction: The correct pairing and separation of homologous chromosomes during meiosis is crucial to ensure both genetic stability and genetic diversity within species. In allodiploid organisms, synapsis often fails, leading to sterility. However, a gynogenetic allodiploid hybrid clone line (GDH), derived by crossing red crucian carp (Carassius auratus ♀) and common carp (Cyprinus carpio ♂), stably produces diploid eggs. Because the GDH line carries 100 chromosomes with 50 chromosomes from the red crucian carp (RCC; ♀, 2n = 2x = 100) and 50 chromosomes from the common carp (CC; C. carpio L., ♂, 2n = 2x = 100), it is interesting to study the mechanisms of homologous chromosome pairing during meiosis in GDH individuals.Methods: By using fluorescence in situ hybridization (FISH) with a probe specific to the red crucian carp to label homologous chromosomes, we identified the synaptonemal complex via immunofluorescence assay of synaptonemal complex protein 3 (SCP3).Results: FISH results indicated that, during early ovarian development, the GDH oogonium had two sets of chromosomes with only one set from Carassius auratus, leading to the failure formation of normal bivalents and the subsequently blocking of meiosis. This inhibition lasted at least 5 months. After this long period of inhibition, pairs of germ cells fused, doubling the chromosomes such that the oocyte contained two sets of chromosomes from each parent. After chromosome doubling at 10 months old, homologous chromosomes and the synaptonemal complex were identified.Discussion: Causally, meiosis proceeded normally and eventually formed diploid germ cells. These results further clarify the mechanisms by which meiosis proceeds in hybrids
    • …
    corecore